Fitting the data from embryo implantation prediction: Learning from label proportions.

نویسندگان

  • Jerónimo Hernández-González
  • Iñaki Inza
  • Lorena Crisol-Ortíz
  • María A Guembe
  • María J Iñarra
  • Jose A Lozano
چکیده

Machine learning techniques have been previously used to assist clinicians to select embryos for human-assisted reproduction. This work aims to show how an appropriate modeling of the problem can contribute to improve machine learning techniques for embryo selection. In this study, a dataset of 330 consecutive cycles (and associated embryos) carried out by the Unit of Assisted Reproduction of the Hospital Donostia (Spain) throughout 18 months has been analyzed. The problem of the embryo selection has been modeled by a novel weakly supervised paradigm, learning from label proportions, which considers all the available data, including embryos whose fate cannot be certainly established. Furthermore, all the collected features, describing cycles and embryos, have been considered in a multi-variate data analysis. Our integral solution has been successfully tested. Experimental results show that the proposed technique consistently outperforms an equivalent approach based on standard supervised classification. Embryos in this study were selected for transference according to the criteria of the Spanish Association for Reproduction Biology Studies. Obtained classification models outperform these criteria, specifically reordering medium-quality embryos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Learning from Label Proportions

Learning from Label Proportions (LLP) is a learning setting, where the training data is provided in groups, or “bags”, and only the proportion of each class in each bag is known. The task is to learn a model to predict the class labels of the individual instances. LLP has broad applications in political science, marketing, healthcare, and computer vision. This work answers the fundamental quest...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

3P: Personalized Pregnancy Prediction in IVF Treatment Process

We present an intelligent learning system for improving pregnancy success rate of IVF treatment. Our proposed model uses an SVM based classification system for training a model from past data and making predictions on implantation outcome of new embryos. This study employs an embryo-centered approach. Each embryo is represented with a data feature vector including 17 features related to patient...

متن کامل

Selecting the embryo with the highest implantation potential using developmental and morphometric scoring.

Embryo selection has been based on developmental and morphological characteristics. However, the presence of an important intra-and inter-observer variability in the microscopic evaluation of standard scoring system (SSS) has been reported. A golden standard for selection of embryos on day 3 is currently lacking. New technology using multilevel images combined with a computerassisted scoring sy...

متن کامل

I-5: Molcular and Cellular Interactions in UterineReceptivity for Implantation

Background: Though plausible candidate adhesion systems have been identified, current knowledge of embryo-maternal attachment in human is limited by the inability to conduct well-controlled functional investigations. We have sought a viable medium-throughput model for the identification and functional assessment of molecular markers in the initial epithelial phases of implantation. An ideal mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical methods in medical research

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2018